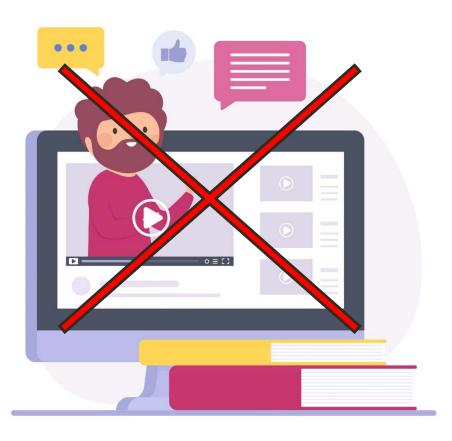
Online Education

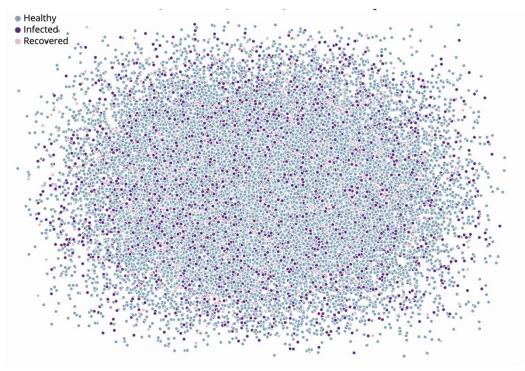

Samer Adeeb May 2020

Pictures

- <u>www.freepik.com</u>
- Unless otherwise noted, pictures are designed by Freepik

Format:

• It is NOT a Tutorial


Layout

- Introduction and Definitions
- Asynchronous content
- Synchronous lectures and labs
- Labs, Exams, and Assessments
 - Hands-on Labs
 - Multiple Choice Questions
 - Long answer Questions
- Miscellaneous
- Recommendation

INTRODUCTION AND DEFINITIONS

- What just happened?
- Who can help us?
- What can we do?

- California State Universities cancel all-in person classes:
- <u>https://abc7.com/education/csu-campuses-to-remain-closed-through-fall-semester/6176291/</u>
- https://stack.dailybruin.com/2020/05/12/covid-model/

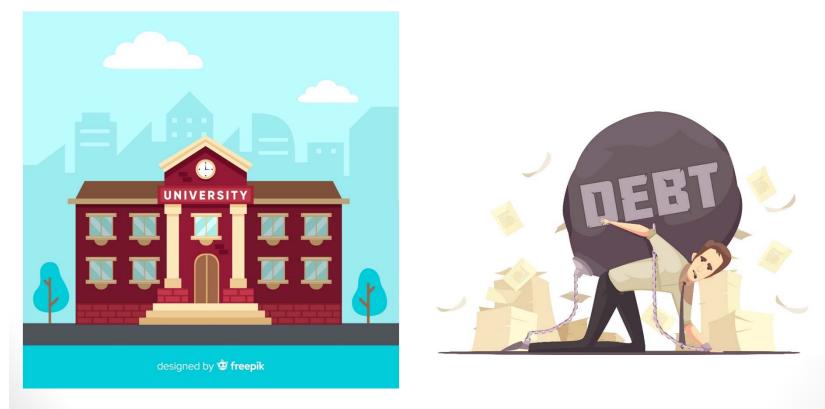
- UBC: "will primarily offer larger classes online with selected smaller classes conducted inperson, adhering to physical distancing and other public health requirements."
- SFU: "we will endeavour to deliver in-person instruction in those courses whose learning objectives cannot be achieved through remote means"
- UVIC: "predominantly online for the fall term."

•

- UNBC: "predominantly via alternative modes of delivery"
- Thompson Rivers University: "many of our programs will no doubt continue to be offered in alternative format – that is to say, virtually."
- Royal Roads University: "programs, courses and residencies will continue to be delivered entirely online until December 31, 2020. Students in program areas that cannot be shifted to online work will be contacted about alternative arrangements.""
- Uof S: "combine primarily remote online learning, with limited classroom, laboratory, clinical and physical instruction only where warranted and where circumstances permit."
- U of R: "cautious approach," specifying that "a continuation of the remote delivery we are now using offers students in the fall term the best chance of academic success."
- Universite de Montreal: "the fall 2020 semester will be held largely at a distance," adding that "only certain courses or portions of courses may be given on campus."
- McGill: ""will be offered primarily through remote delivery platforms." As the situation evolves, the university "will examine possibilities for on-campus student life and learning activities, which will respect careful safety protocols. These may include activities such as small classroom-based seminars, conferences, tutorials, workshops, or reading groups as well as various campus life and engagement activities."

https://www.universityaffairs.ca/news/news-article/several-universities-announce-their-fall-plans-with-instruction-primarilyonline/?utm_source=University+Affairs+e-newsletter&utm_campaign=6f11f919da-EMAIL CAMPAIGN 2020 05 07&utm_medium=email&utm_term=0_314bc2ee29-6f11f919da-425255341

Price of education covers⁽¹⁾"Certification" and "Experience"


(1) <u>https://nymag.com/intelligencer/2020/05/scott-galloway-future-of-college.html</u> Bag of money: Designed by studiogstock / Freepik

• Students might choose to go to a "Mega online University"⁽¹⁾

(1) <u>https://www.chronicle.com/article/Meet-the-New-Mega-University/245049?cid=rclink</u> Photo: Designed by starline / Freepik

 "Public universities hardly ever go bankrupt, but they can be permanently diminished." Kevin Carey ⁽¹⁾

(1) <u>https://www.chronicle.com/article/How-Will-the-Pandemic-Change/248474?key=Q-8a5P7D5OHujVB3ZSRDR1GphAxyJHteTzvSQOkhcVQD5MtPBXKCPh-DWXbb-Sfhdms2YmlfdmpYbVhMdk8zdDI4aU9RVHF4ZG1Qbkhwa0dxMWZaMTA2VFBHcw</u>

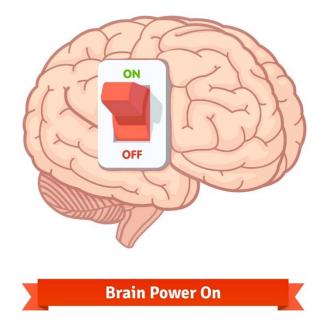
11

(2) Debt picture: Designed by macrovector / Freepik

 "This crisis has revealed the importance of good teaching and how difficult it is" Erin Bartram⁽¹⁾

(1) <u>https://www.chronicle.com/article/How-Will-the-Pandemic-Change/248474?key=Q-8a5P7D5OHujVB3ZSRDR1GphAxyJHteTzvSQOkhcVQD5MtPBXKCPh-DWXbb-Sfhdms2YmlfdmpYbVhMdk8zdDI4aU9RVHF4ZG1Qbkhwa0dxMWZaMTA2VFBHcw</u>

Who can help us?


 "The managers won't save us. No one will save us" Marc Bousquet⁽¹⁾

(1) <u>https://www.chronicle.com/article/How-Will-the-Pandemic-Change/248474?key=Q-8a5P7D5OHujVB3ZSRDR1GphAxyJHteTzvSQOkhcVQD5MtPBXKCPh-DWXbb-Sfhdms2YmlfdmpYbVhMdk8zdDI4aU9RVHF4ZG1Qbkhwa0dxMWZaMTA2VFBHcw</u> Picture: Designed by Naulicreative / Freepik

Who can help us?

 Administrators are concerned with "narrowing the true freedom of thought in the interest of complacent obedience to status quo"^{(1)(2).}

Henry Rosovsky. The University: An Owner's Manual. <u>https://www.amazon.ca/University-Owners-Mannual-Henry-Rosovsky/dp/0393307832</u>
 Interview with Noam Ghomsky. <u>https://www.hup.harvard.edu/catalog.php?isbn=9780674002821</u>
 Picture: Designed by iconicbestiary / Freepik

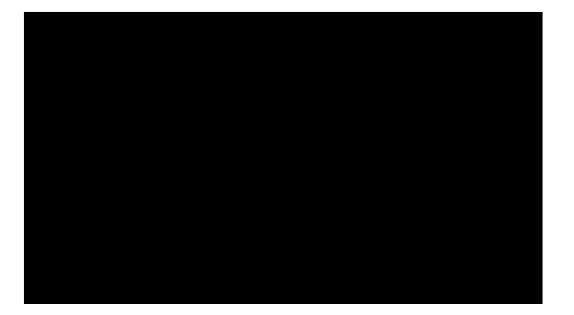
Who can help us?

 "We, the tenured, must commit to making the university a better place" Aimee Morrison⁽¹⁾

What can we do?

"Let's reclaim our moral purpose as sources of knowledge, service, and even hope". Patricia McGuire⁽¹⁾

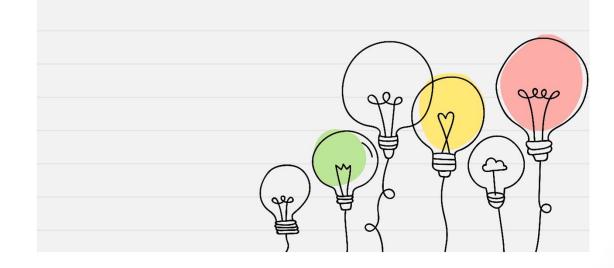
"Before we even think about a syllabus or videos or Zoom, think about what it means to be a student. Now." Cathy Davidson⁽²⁾


(1) <u>https://www.chronicle.com/article/How-Will-the-Pandemic-Change/248474?key=Q-8a5P7D5OHujVB3ZSRDR1GphAxyJHteTzvSQOkhcVQD5MtPBXKCPh-DWXbb-Sfhdms2YmlfdmpYbVhMdk8zdDI4aU9RVHF4ZG1Qbkhwa0dxMWZaMTA2VFBHcw</u>

(2) <u>https://www.hastac.org/blogs/cathy-davidson/2020/05/11/single-most-essential-requirement-designing-fall-online-course</u>

Picture: Designed by macrovector / Freepik

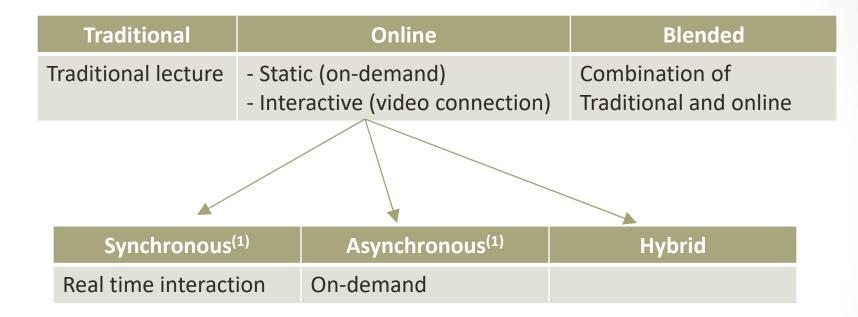
What can we do?


 "We can- we must –replicate online the vibrancy of campus life" ⁽¹⁾Joseph E. Aoun

(1) <u>https://www.chronicle.com/article/How-Will-the-Pandemic-Change/248474?key=Q-8a5P7D5OHujVB3ZSRDR1GphAxyJHteTzvSQOkhcVQD5MtPBXKCPh-DWXbb-Sfhdms2YmlfdmpYbVhMdk8zdDI4aU9RVHF4ZG1Qbkhwa0dxMWZaMTA2VFBHcw</u> Jimmy & the Roots Video: https://www.youtube.com/watch?v=d1ilvfdvrUI

What can we do?

 ". But rather than set up a false choice between online and inperson instruction, we should envision a distinctively hybrid future in which the faculty will have far more freedom to develop instructional designs using both virtual and live classes. "Patricia McGuire⁽¹⁾



(1) <u>https://www.chronicle.com/article/How-Will-the-Pandemic-Change/248474?key=Q-8a5P7D5OHujVB3ZSRDR1GphAxyJHteTzvSQOkhcVQD5MtPBXKCPh-DWXbb-Sfhdms2YmlfdmpYbVhMdk8zdDI4aU9RVHF4ZG1Qbkhwa0dxMWZaMTA2VFBHcw</u>

Definitions:

- Pedagogical Forms
- Online Pedagogy Forms

Pedagogical Forms:

(1) <u>https://thebestschools.org/magazine/synchronous-vs-asynchronous-education/</u>

Online Lectures

Synchronous ⁽¹⁾	Asynchronous ⁽¹⁾	Hybrid
 Real time interaction Advantages: Engagement Dynamic Mentorship 	On-demand Advantages: - Flexible - Self-pace - Affordability	
Disadvantages: - Rigid - Technical difficulties	Disadvantages: - Isolation - Time lag	

Online Lectures

Synchronous ⁽¹⁾	Asynchronous ⁽¹⁾	Hybrid
Instructor should consider: - learning pace - Technical difficulties	Instructor should consider: - Students learn from interaction with each other and with instructor	

CREATING ASYNCHRONOUS CONTENT

- Civil and Environmental Engineering, Youtube Channel:
 - <u>https://www.youtube.com/channel/UCU3qM</u>
 <u>cMLT8sbaaYCY4HogWw/playlists</u>

• CTL resources:

Centre for Teaching and Learning

 <u>https://www.ualberta.ca/centre-for-teaching-</u> and-learning/resources/online-teaching.html

• PowerPoint:

13.13.6 GAUSS QUADRATURE

EXAMPLE

Calculate the exact integral of xe^{α} on the interval [0,3] and find the absolute relative error if a Gauss 1, 2, 3, and 4 integration point scheme is used

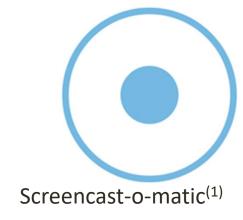
SOLUTION

First, to differentiate between the given function limits, and the limits after changing variables, we will assume that the function is given in terms of z as follows:

The exact integral is given by:

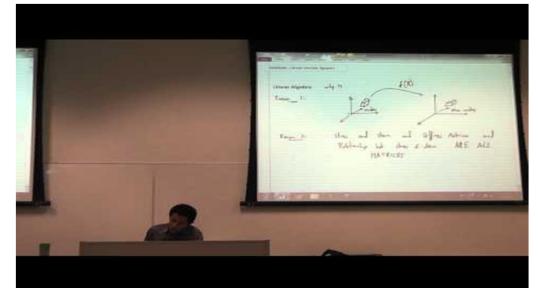
$\int_{0}^{3} ze^{z} \, \mathrm{d}z = e^{z}(z-1)|_{z=0}^{z=3} = 2e^{3} + 1 = 41.1711$ $\int_{a}^{b} g(z) \, \mathrm{d}z = \int_{-1}^{1} g\left(\underbrace{(b-a)(x) + (b+a)}_{2}\right) \underbrace{\frac{(b-a)}{2}}_{2} \, \mathrm{d}x$ $\int_{0}^{3} ze^{z} \, \mathrm{d}z = \int_{-1}^{1} g\left(\frac{3x+3}{2}\right) \frac{3}{2} \, \mathrm{d}x = \int_{-1}^{1} \underbrace{\left(\frac{(3x+3)}{2}\right) e^{\left(\frac{(3x+3)}{2}\right)}}_{2} e^{\frac{(3x+3)}{2}}$

- E.g.:<u>https://www.youtube.com/playlist?list=PLWIJvChadvVyrGBXh7ThvFskJIOO1fnNI</u>
- Advantages:
 - Narrate each slide at your own pace
 - Export the video without the need of any other software
- Disadvantages:
 - Limited by PPT capabilities


• Screen Capturing Software:

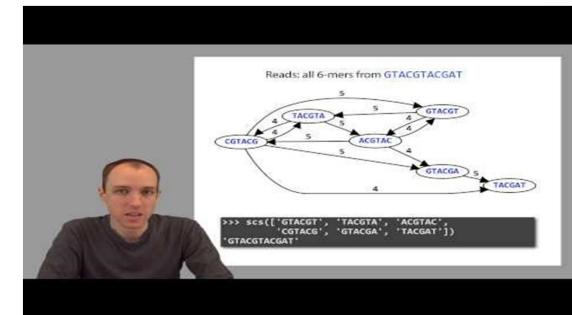
(~\$50 onthehub)

Camstudio



- E.g.:<u>https://www.youtube.com/playlist?list=PLWlJvChadvVwSrn6irdxZ_TwTuz5A6DtW</u>
- E.g.: <u>https://www.youtube.com/playlist?list=PL9491E4BCFC7CE63A</u>
- Advantages:
 - Free to run anything on the screen.
 - With the right tools, you can provide vibrant content
- Disadvantages:
 - Technically demanding

• Screen Capturing Software:


etter 1 - Mallar Mallar Mallar I. Inder Mallar Person Jac 200 181 met Ternat I.d. Coptus Kasatan Parter Walter Hall	- 3
fran Mellemañae) vuener metre	Second Contract Second Second
<pre>http:// Global'*"]</pre>	
<pre>H[20] * Func[n_] := (</pre>	
exact = DSolve[{u''[x] + u'[x] + u[x] = 1, u[0] = 1.5, u[3] = 2.5}, u, x];
h = (3 - 0) / n;	
uexact = u[x] /. exact[[1]];	
<pre>xs = Table[i + h, {i, 0, n}];</pre>	
us = Table[Symbol[*u" <> ToString[i]], (i, 0,	n]];
us[[1]] = 1.5;	
us[[n+1]] = 2.5;	
Unknowns = us[[2 :: n]];	
Equations -	
Table[(us[[i + 1]] - 2 us[[i]] + us[[i - 1]]) /	/h^2+
(us[[i+1]]-us[[i-1]]) / (2h) + us[[i]]	$= 1, \{1, 2, n\}$
solution = Solve[N[Equations], Unknowns];	
nsolution = us /. solution[[1]];	
TableOfDifference - Table[Abs[nsolution[[1]] - uexact /. x + xs[[1]]],
<pre>(1, 1, n+1));</pre>	
MaxDifference = Max[TableOfDifference])	

- Good old Video Camera:
- E.g.: <u>https://www.youtube.com/playlist?list=PLWIJvChadvVxot0R2xLTTalmnVwva41ET</u>

- Advantages:
 - Replicate your actual lectures
 - Students can see you
- Disadvantages:
 - Will require video editing
 - Requires some resources
 - Might be less engaging

- Split Screen / switch between your face and slides:
 - Google meets
 - Zoom
 - screen capture
 - (@1.26

- Advantages:
 - Replicate your actual lectures
 - Students can see you
- Disadvantages:
 - Will require video editing
 - Time consuming
 - https://www.youtube.com/watch?v=QykgNu0vdos&feature=emb_logo

- Split Screen / switch between your face and slides:
 - Gaming tools:
 - Nvidia Gforce
 - Fraps
 - Xsplit
 - OBS

- Expert:
 - Dr. Japan Trivedi
 - https://www.youtube.com/watch?v=h2nr7UDEQgU&feature=emb_logo

- Tips:
 - Short duration of clips
 - Use visual elements^{(1) (2)}
 - Test knowledge with quizzes and self assessments ⁽²⁾
 - Do not constrain yourself with lecture length. Sooner or later the concept of Credit Hours will have to be revised. ⁽³⁾
 - New tools are popping up by the minute. Use whichever makes you most comfortable. The quality of the lecture depends on the layout, design, and content, not the tool.

(2) <u>https://teaching.temple.edu/edvice-exchange/2016/03/6-tips-creating-engaging-video-lectures-students-will-actually-watch</u>

^{(1) &}lt;u>https://myemail.constantcontact.com/One-Thought-to-Start-Your-Day--Credit-Hours.html?soid=1103080520043&aid=lrVtBOPssRs</u>

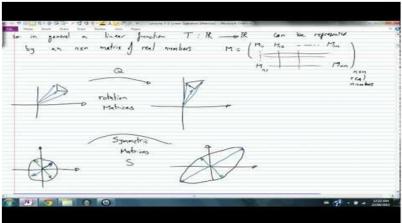
⁽³⁾ https://medium.com/@didolores/tips-for-creating-effective-video-lectures-for-online-courses-8413e32d297b

 Invest in a good microphone: (~\$70).
 E.g. blue Snowball iCE ⁽¹⁾

EXAMPLE

Calculate the exact integral of xe^{x} on the interval [0,3] and find the absolute relative error if a Gauss 1, 2, 3, and 4 integration point scheme is used

SOLUTION


First, to differentiate between the given function limits, and the limits after changing variables, we will assume that the function is given in terms of z as follows

The exact integral is given by:

$$\int_{0}^{1} ze^{z} dz = e^{z}(z-1)|_{z=0}^{z=3} = 2e^{3} + 1 = 41.1711$$

$$\int_{a}^{b} g(z) dz = \int_{-1}^{1} g\left(\underbrace{(b-a)(x) + (b+a)}_{2}\right) \underbrace{\frac{(b-a)}{2}}_{2} dx$$

$$\int_{0}^{3} ze^{z} dz = \int_{-1}^{1} g\left(\frac{3x+3}{2}\right) \frac{3}{2} dx = \int_{-1}^{1} \underbrace{\frac{(3x+3)}{2}}_{2} e^{\left(\frac{(3x+3)}{2}\right)} \frac{3}{2} dx$$

With: https://youtu.be/44ak8dAxzLl

Without: https://youtu.be/44ak8dAxzLI

(1) https://www.bestbuy.ca/en-ca/product/blue-microphones-blue-microphones-snowball-condenser-mic-black-1929-snowball-blk/10425172?cmp=knc-s-71700000061237381&gclid=EAIaIQobChMIoffj5ee76QIV4wl9Ch1j1QTsEAYYASABEgKuJvD_BwE&gclsrc=aw.ds

• Asynchronous content is essential, but not sufficient

• Majority of students learn through interaction

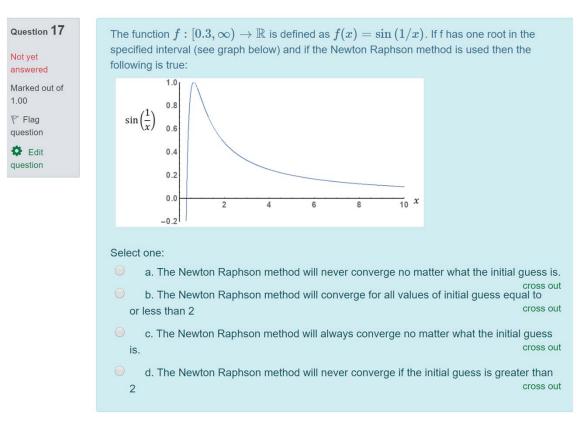
• Engineering Accreditation stipulates "contact hours"

SYNCHRONOUS LECTURES

Synchronous Lectures:

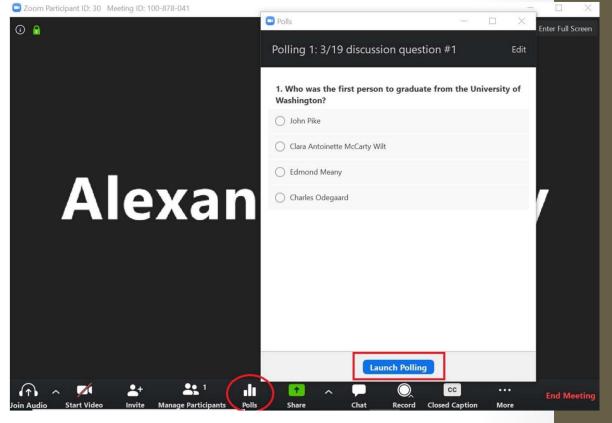
- Simple synchronous lecture:
 - Google meet
 - Zoom
- Tips:
 - Students should mute their mics
 - Consider turning off your video camera for slow connections
 - Record the session and have it available online later
 - Students should use the **chat area** to ask questions.
 - Use **share screen** to share your slides.
 - Use a **headphone set**.

Synchronous Lectures:


• Multiple Choice Questions or Lecture Exercises:

Question 4	Consider the following initial value problem:
Not yet answered	$y^\prime(t)=0.05y^2t$
Marked out of 1.00	If the initial condition is given by $y(0)=y_0=1$, and if a step size $h=0.5$ is used to find a numerical solution using the explicit Euler method, then the value of y_2 (the value of y at
♥ Flag question	t=1) is given by:
Edit question	Select one: a. $y_2 = 1.038$
	$igodown$ b. $y_2=1.0125$ cross out
	$igodow$ c. $y_2=1.025$
	• d. $y_2 = 1.077$ Advantage: Participation marks:
	cross out

eclass: MCQ questions:


https://support.ctl.ualberta.ca/index.php?/Knowledgebase/Article/V iew/286/13/adding-and-managing-quiz-questions

• Multiple Choice Questions or Lecture Exercises:

 eclass: MCQ questions: <u>https://support.ctl.ualberta.ca/index.php?/Knowledgebase/Article/V</u> <u>iew/286/13/adding-and-managing-quiz-questions</u>

MCQ
or Lecture Exercises:
(Zoom Polls)

- Tutorial: <u>https://www.youtube.com/watch?v=HDHRmvpUVXw</u>
- Zoom session polls: <u>https://support.zoom.us/hc/en-us/articles/213756303-Polling-for-meetings</u>

Advantage: Anonymous polling and quick

• Breakout Rooms / Groups

- Zoom:
 - Tutorial: <u>https://www.youtube.com/watch?v=fIJJLtanyxk</u>
 - Breakout rooms: <u>https://support.zoom.us/hc/en-us/articles/206476093-Enabling-breakout-rooms</u>
- Tip:
 - You need a moderator for each "group"

- Breakout Rooms / Groups
- Google meets:
 - Will have to be done manually!
- Tip:
 - You need a moderator for each "group"

- Poll tools:
 - https://www.mentimeter.com/
 - https://www.polleverywhere.com/
 - Kahoot <u>https://kahoot.com/</u>
 - Zoom polls
 - Eclass quizzes
 - IST E-Poll
 - free tool available to UAlberta instructors called ePoll. <u>https://ist.ualberta.ca/index.php/blog/news/epoll-replaces-iclicker-student-response-tool</u> knowledgebase articles on ePoll <u>https://support.ctl.ualberta.ca/index.php?/IST/Knowledgebase/List/Index/17/iclicker</u>

LABS, EXAMS, AND ASSESSMENTS

Hands-on Labs

- E.G.: CivE 270 labs: <u>https://www.youtube.com/playlist?list=PLt2e1W5DyEIRneafRNTU16XK</u> <u>w9qQ3c7FO</u>
- Suggestions:
 - Video-tape lab
 - Use a video-editing software to highlight intricacies.
 - Provide data for students to perform calculations

Multiple Choice Assessments

You can preview this quiz, but if this were a real attempt, you would be blocked because:

This quiz is not currently available

Question 16 Not yet answered	In a numerical procedure to find the root the following estimates were obtained $x_1 = 1.559$, $x_2 = 1.421$, $x_3 = 1.413$, $x_4 = 1.4135$, $x_5 = 1.4133$. If the criterion for convergence is that the absolute relative error $\varepsilon_r < 0.0002$, then, the first acceptable root is:
Marked out of 1.00	Select one:
♥ Flag question	a. x ₂
Edit question	\bigcirc b. x_3 cross out
	\odot c. x_4 cross out
	\odot d. x_5 cross out
	cross out
Question 17	The function $f:[0.3,\infty) o\mathbb{R}$ is defined as $f(x)=\sin{(1/x)}.$ If f has one root in the
Not yet answered	specified interval (see graph below) and if the Newton Raphson method is used then the following is true:
Marked out of	1.0

Quiz navigation

1	2	3	4	5	6
7	8	9	10		12
13	14	15	16	17	18
19	20	21	22	23	24
25	26	27	28	29	30
31	32	33	34	35	36
37	38	39	40	41	42
43	44	45	46	47	48
49	50				
Finis	h atter	npt			
Sta	art a n	ew pr	eview		

- eclass: MCQ questions: <u>https://support.ctl.ualberta.ca/index.php?/Knowledgebase/Article/View</u>/286/13/adding-and-managing-quiz-questions
- Tips:
 - Shuffle questions / shuffle answers
 - 5 questions per page
 - Use question banks for future delivery of course

Multiple Choice Assessments

Question categories for 'Course: CIV E 295 CIVIL ENGINEERING ANALYSIS II (LEC B1 Wi20)'

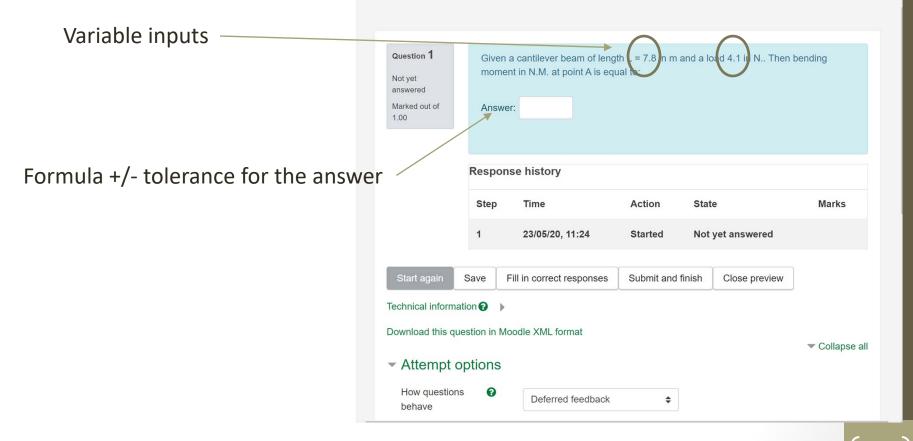
Default for CIV E 295 (LEC B1 Wi16) (0)

The default category for questions shared in context 'CIV E 295 (LEC B1 Wi16)'.

- ÷. • BVP (4) 🛍 🍄 🗲 Cramer Method (0)
 Cramer Method (0) ◦ Error (5) □ ♀ ← ↑ ↓ → Fixed Point Iteration Method Multi variables (0) • Fixed Point Iteration Method one variable (1) Gauss and Gauss Jourdan Elimination (5) Graphical, False Position and Bisection (5) ○ IVP (4) □ ♀ ← ↑ ↓ → Jacobi and Gauss-Seidel Methods (5)

 ⁽⁵⁾

 ⁽⁵⁾
 ◦ Linear Algebra (0)
 III
 III LU and Cholesky decompositions (2) III Newton Raphson Multi variables (2) III Newton Raphson one variable (2)
 A + A Numerical Differentiation (3) III S + A + A Numerical Integration Gauss Quadrature (1) Numerical Integration (Rectangle to Simpson) (4) Numerical Integration Richardson Extrapolation (1)


 ⁽¹⁾
 ○ ODE (1)
 ○ ODE (1)
 ○ ODE (1)
 ○ ODE (1) ○ Piecewise Interpolation (2)
 Image: Interpolation (2)
 Image: Imag o Polynomial Interpolation (8) 1 🛱 🛠 🛧 🔸 🗲 Taylor Series (4)
 Taylor Series (4)
- eclass: MCQ questions:

https://support.ctl.ualberta.ca/index.php?/Knowledgebase/Article/View /286/13/adding-and-managing-quiz-questions

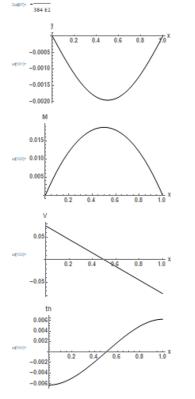
- Tips:
 - Shuffle questions / shuffle answers
 - 5 questions per page
 - Use question banks for future delivery of course

Calculated Questions

eclass.srv.ualberta.ca/question/preview.php?id=10776025&courseid=56774

 <u>https://support.ctl.ualberta.ca/index.php?/Knowledgebase/Ar</u> <u>ticle/View/326/45/adding-calculated-quiz-questions</u>

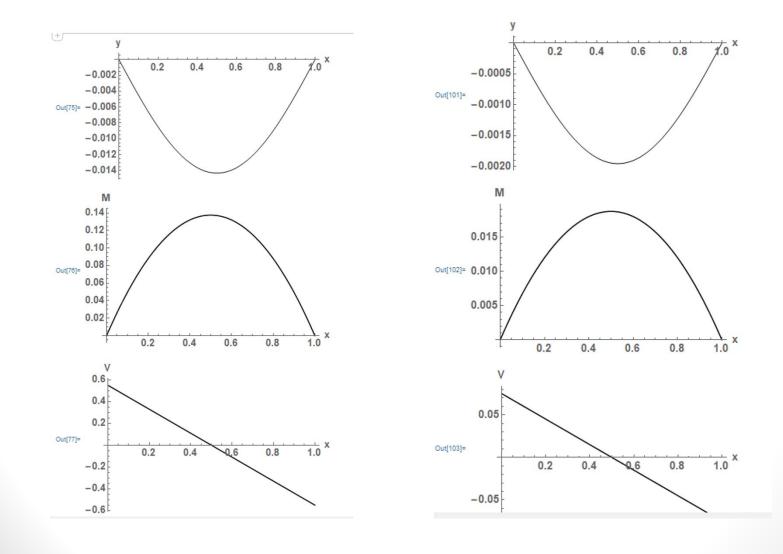
46


×

Long Answer Assessments

- Tips:
 - Students should upload their work. (use <u>camscanner</u>) <u>https://www.camscanner.com/</u>
 - Questions should be different among students
 - Trust your students
 - Don't curve

 $\begin{array}{l} \forall 1 - \forall \ j \ , \ x \rightarrow 0 \ ; \\ \forall 2 - \forall 1 \ , \ x \rightarrow 1 \ ; \\ \forall 2 - \forall 1 \ , \ x \rightarrow 0 \ ; \\ y 2 - y t i \ j \ , \ x \rightarrow 0 \ ; \\ y 2 - y t i \ j \ , \ x \rightarrow 0 \ ; \\ z \rightarrow 0 \ z \rightarrow 0 \ ; \\ t 1 - th \ , \ x \rightarrow 0 \ ; \\ t 2 - th \ , \ x \rightarrow 0 \ ; \\ t 2 - th \ , \ x \rightarrow 0 \ ; \\ t 2 - th \ , \ x \rightarrow 0 \ ; \\ t 2 - th \ , \ x \rightarrow 0 \ ; \\ t 2 - th \ , \ x \rightarrow 0 \ ; \\ x \rightarrow 0 \ y \ (x \ , x \) \ ; \\ y - y t i \ , \ x \rightarrow 1 \ ; \\ t - 0 \ y \ , \ (x \ , x \) \ ; \\ y - y t i \ , \ x \rightarrow 1 \ ; \\ t - 0 \ y \ , \ (x \ , x \) \ ; \\ y - y t i \ , \ (x \ , x \) \ ; \\ y - y t i \ , \ (x \ , x \) \ ; \\ y - y t i \ , \ (x \ , x \) \ ; \\ y - y t i \ , \ (x \ , x \) \ ; \\ y - y t i \ , \ (x \ , x \) \ ; \\ y - y t i \ , \ (x \ , x \) \ ; \\ y - y t i \ , \ (x \ , x \) \ ; \\ y - y t i \ , \ (x \ , x \) \ ; \\ y - y t i \ , \ (x \ , x \) \ ; \\ y - y t i \ , \ (x \ , x \) \ ; \\ y - y t i \ , \ (x \ , x \) \ ; \\ y - y t i \ , \ (x \ , x \) \ ; \\ y - y t \ , \ (x \ , x \) \ ; \\ y - y t \ , \ (x \ , x \) \ ; \\ y - y t \ , \ (x \ , x \) \ ; \\ y - y t \ , \ (x \ , x \) \ ; \\ y - y t \ , \ (x \ , x \) \ ; \\ y - y t \ , \ (x \ , x \) \ ; \\ y - y t \ , \ (x \ , x \) \ ; \\ y - y t \ , \ (x \ , x \) \ ; \\ y - y t \ , \ (x \ , x \) \ ; \\ y - y t \ , \ (x \ , x \) \ ; \\ y - y t \ , \ (x \ , x \) \ ; \\ y - y t \ , \ (x \ , x \) \ ; \\ y - y t \ , \ (x \ , x \) \ ; \\ y - y t \ , \ (x \ , x \) \ ; \\ y - y t \ , \ (x \ , x \) \ ; \\ y - y t \ , \ (x \ , x \) \ ; \\ y - y t \ , \ (x \ , x \) \ ; \ , \ \ , \ \) \ , \ \ ,$


Plot (y, (x, 0, L], BaseStyle + Directive (Bold, 15), PlotRange + All, AxesLabel + (*x*, *y*1, PlotStyle + (Black, Thickness (0.005)])
Plot (y, (x, 0, L1, PlotRange + All, BaseStyle + Directive (Bold, 15), PlotBaseL + (*x*, ***), PlotStyle + (Black, Thickness (0.005)])
Plot (y, (x, 0, L1, BaseStyle + Directive (Bold, 15), PlotRange + All, AxesLabel + (*x*, ***), PlotStyle + (Black, Thickness (0.005)])
Plot (yt, (x, 0, L1, BaseStyle + Directive (Bold, 15), AxesLabel + (*x*, ***), PlotStyle + (Black, Thickness (0.005)])
Plot (yt, (x, 0, L1, PlotRange + All, BaseStyle + Directive (Bold, 15), AxesLabel + (*x*, ***), PlotStyle + (Black, Thickness (0.005)])

Sat

E.g.: Find *y*, *M*, *V* for a simply supported beam

Long Answer Assessments

Long Answer Assessments

- Mobius system: <u>https://www.digitaled.com/demo</u>
- (\$30.00 per student)

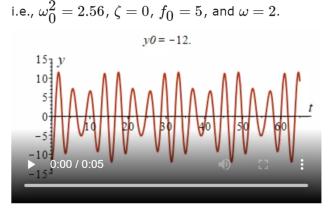


Figure 4.5.6a: Varying initial displacement $y_{m 0}, (v_{m 0}=1)$

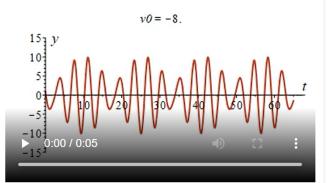


Figure 4.5.6b: Varying initial velocity $v_{f 0}, (y_{f 0}=1)$

Decide whether the statements below are true or false.

- 1. The graph of y(t) for v_0 is the refection of the graph for $-v_0$.
 - 🔍 (a) True 🔍 (b) False
- 2. The phase angle ϕ is only zero when the initial condition y_0 is zero.
 - (a) True(b) False
- 3. The solutions have greater amplitudes for larger magnitudes of y_0 and v_0 .
 - 🔍 (a) True 🔍 (b) False

Marking Assessments

- Mobius does automatic marking (See previous slide)
- Crowmark is a great tool for assignment marking through eclass:
 - https://crowdmark.com/

MISCELLANEOUS

Camscanner

- Tool for students to scan their assignments and convert them into PDF with their phones:
- https://www.camscanner.com/

Privacy and Security

• <u>https://www.ualberta.ca/chief-information-security-officer/online-meetings-and-classes/index.html</u>

Copyright Issues

<u>https://www.ualberta.ca/faculty-and-staff/copyright/intro-to-copyright-law/substantiality.html</u>

A decision to be indecisive

<u>https://www.mcsweeneys.net/articles/a-note-from-your-university-about-its-plans-for-next-semester</u>

RECOMMENDATION

5 Low-Tech, Time-Saving Ways to Teach Online⁽¹⁾

- 1: Post static content for students to read and watch.
- 2: Use the quiz and assignment functions in your campus LMS to make sure they're doing the reading.
- 3: Wake up to the learning potential of asynchronous text discussions.
- 4: Create a routine, reliable weekly schedule.
- 5: Make frequent, strategic, and highly visible appearances online.

My Recommendation

- (Re)Design the layout of the course in advance including:
 - Lectures asynchronous and synchronous content
 - Seminar and Lab content and layout
 - Assignments and labs.
- My recommended layout (applicable to lectures, labs, and seminars):
 - Pre-record asynchronous lecture
 - Setup Zoom synchronous lecture with the following layout:
 - Quick summary of main concepts
 - Quizzes to assess students
 - Presentation of the model answers of quizzes

Success in any Pedagogical Form:

- Organization
- Conspicuity
- Perspicuity

Possible Tutorials

- Dr. Japan Trivedi: Asynchronous content using advanced tools
- Samer Adeeb: Asynchronous content using PPT and screen capture software
- Samer Adeeb: Assessments using eclass

Available Tutorials from CTL

- Tips when lecturing live using Zoom (Updated April 2, 2020)
- <u>https://www.youtube.com/watch?v=Y3cb-hKwimM&feature=youtu.be</u>

- Creating community remotely
- <u>https://drive.google.com/file/d/18kYd3FyVUftWpCU8cLg2O0V</u> <u>uFyhYgYf4/view</u>

Experience from CivE 381 Summer 2020

- Dr. Elena Zabalotnii provided her experience with teaching this summer.
- A PDF is posted but the key highlights:
 - Enforce using Camscanner
 - Some eclass bugs
 - Interactive components are a must

FINAL THOUGHTS

Death of the Brick and Mortar University/Office?

- "Traditional students have overwhelmingly made clear that they prefer the brick-and-mortar educational experience, in which schedules are set, they can see professors in person both inside and outside of class, and they have more opportunities to engage with other students. These students want to get out of the family home (and for some moms and dads, I am sure, the feeling is mutual)."⁽¹⁾
- "The desire of bright young people from all over the world for an oncampus education remains strong. Unless you have been drinking the disruptors' Kool-Aid (or is it now hydroxychloroquine?), it should be clear that the disappointment of students this spring isn't because the features of Zoom aren't cool enough. It's because they recognize that carving out a space and time for learning together in a setting that amplifies understanding and inquiry is deeply satisfying."

^{(1) &}lt;u>https://www.chronicle.com/article/A-Fall-Unlike-Any-I-Have/248772?key=3nPk8ajeoU0Dy8ZoVQauE-kW5LFDnkYnPFPXbkDhkMUEJ9PjAp0kHCmA6FnhINTNYmw2UHoycVVmUFd0ZU9ISIhnZk1TLWRsdlFuR1pYUnZYcmkyYlVta20wdw</u>

^{(2) &}lt;u>https://www.chronicle.com/article/Beware-the-Doyens-of/248868?key=LwO6j3K0mIGHYkT3aRWpxL8AQxHIUsVz-</u>x1FFO3NL9j3G3muwCTodM4k7MmiOZF5MGg5V0Fnd2F2RTNkb2wtV2xZbHVIeXpjdTJKQ2laU1AtQXYzUnRWQmluaw

Death of the Brick and Mortar University/Office? Death of the office

As the pandemic leaves offices around the world empty, Catherine Nixey asks what was the point of them anyway?

(1) https://www.1843magazine.com/features/death-of-the-office

Attendees

- Rick Chalaturnyk
- Yang Liu
- Karim El-Basyouny
- Hassan Dehghanpour
- Tae Kwon
- Yuxiang Chen
- Carlos Cruz Noguez
- Chui
- Thian Gan
- Mustafa Gul
- Ania Ulrich (Torrey Dance)
- Wei Victor Liu
- Yaman Boluk.
- Yong Li
- Zaher hashisho
- Jeff Boisvert
- Yashar Pourrahimian
- Ergun Kuru
- Ahmed Hammad
- Ian Buchanan
- Leila Hashemian
- Douglas Tomlinson
- Maricor Arlos
- Tong Yu
- Japan Trivedi
- Robert Hall
- Mark Loewen
- Andy Li